skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McNichol, Ann P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Zhang, Mingming (Ed.)
    We employed two compelling and distinct methods, Fourier Transform Infrared Spectroscopy (FTIR) and Ramped Pyrolysis Oxidation (Ramped PyrOx), to examine the quality of organic matter (OM) stored in four peatlands located along a latitudinal gradient (Tropical (4˚N), Subtropical (27˚N), Boreal (48˚N), and Polar (68˚N)). FTIR was used to quantify the relative abundance of carbohydrates, a relatively labile compound class, and aromatics, which are more recalcitrant, in a sample set of four peat cores. These samples were then prepared using Ramped PyrOx, a second, independent method of determining OM quality that mimics the natural diagenetic maturation of OM that would take place over long timescales. Previous large-scale studies using FTIR to evaluate OM quality have observed that it generally increases with increasing latitude (more carbohydrates, less aromatics). Here, we demonstrate that the Ramped PyrOx approach both validates and complements the FTIR approach. The data stemming from each Ramped PyrOx preparation was input to a model that generates an estimated probability density function of the activation energy (E) required to break the C bonds in the sample. We separated these functions into three fractions (“lowE,” “mediumE,” and “highE”) to create Ramped PyrOx variables that could be quantitatively compared to the compound class abundance data from FTIR. In assessing the agreement between the two methods, we found three significant relationships between Ramped PyrOx and FTIR variables. LowEfractions and carbohydrate content were positively correlated (R2= 0.51) while lowEfractions were negatively correlated with aromatic content (R2= 0.58). MediumEfractions were found to be positively correlated with aromatics (R2= 0.69). 
    more » « less
    Free, publicly-accessible full text available November 14, 2025
  2. null (Ed.)
  3. ABSTRACT This study describes a procedural blank assessment of the ultraviolet photochemical oxidation (UV oxidation) method that is used to measure carbon isotopes of dissolved organic carbon (DOC) at the National Ocean Sciences Accelerator Mass Spectrometry Facility (NOSAMS). A retrospective compilation of Fm and δ 13 C results for secondary standards (OX-II, glycine) between 2009 and 2018 indicated that a revised blank correction was required to bring results in line with accepted values. The application of a best-fit mass-balance correction yielded a procedural blank of 22.0 ± 6.0 µg C with Fm of 0.30 ± 0.20 and δ 13 C of –32.0 ± 3.0‰ for this period, which was notably higher and more variable than previously reported. Changes to the procedure, specifically elimination of higher organic carbon reagents and improved sample and reactor handling, reduced the blank to 11.0 ± 2.75 µg C, with Fm of 0.14 ± 0.10 and δ 13 C of –31.0 ± 5.5‰. A thorough determination of the entire sample processing blank is required to ensure accurate isotopic compositions of seawater DOC using the UV oxidation method. Additional efforts are needed to further reduce the procedural blank so that smaller DOC samples can be analyzed, and to increase sample throughput. 
    more » « less
  4. ABSTRACT In practice, obtaining radiocarbon ( 14 C) composition of organic matter (OM) in sediments requires first removing inorganic carbon (IC) by acid-treatment. Two common treatments are acid rinsing and fumigation. Resulting 14 C content obtained by different methods can differ, but underlying causes of these differences remain elusive. To assess the influence of different acid-treatments on 14 C content of sedimentary OM, we examine the variability in 14 C content for a range of marine and river sediments. By comparing results for unacidified and acidified sediments [HCl rinsing (Rinse HCl ) and HCl fumigation (Fume HCl )], we demonstrate that the two acid-treatments can affect 14 C content differentially. Our findings suggest that, for low-carbonate samples, Rinse HCl affects the Fm values due to loss of young labile organic carbon (OC). Fume HCl makes the Fm values for labile OC decrease, leaving the residual OC older. High-carbonate samples can lose relatively old organic components during Rinse HCl , causing the Fm values of remaining OC to increase. Fume HCl can remove thermally labile, usually young, OC and reduce the Fm values. We suggest three factors should be taken into account when using acid to remove carbonate from sediments: IC abundance, proportions of labile and refractory OC, and environmental matrix. 
    more » « less
  5. null (Ed.)
  6. ABSTRACT Organic carbon (OC) radiocarbon ( 14 C) signatures in marine surface sediments are highly variable and the causes of this heterogeneity remain ambiguous. Here, we present results from a detailed 14 C-based investigation of an Arabian Sea sediment, including measurements on organic matter (OM) in bulk sediment, specific grain size fractions, and OC decomposition products from ramped-pyrolysis-oxidation (RPO). Our results show that 14 C ages of OM increase with increasing grain size, suggesting that grain size is an important factor controlling the 14 C heterogeneity in marine sediments. Analysis of RPO decomposition products from different grain size fractions reveals an overall increase in age of corresponding thermal fractions from finer to coarser fractions. We suggest that hydrodynamic properties of sediment grains exert the important control on the 14 C age distribution of OM among grain size fractions. We propose a conceptual model to account for this dimensionality in 14 C variability that invokes two predominant modes of OM preservation within different grain size fractions of Arabian Sea sediment: finer (<63 µm) fractions are influenced by OM-mineral grain aggregation processes, giving rise to relatively uniform 14 C ages, whereas OM preserved in coarser (>63 µm) fractions includes materials encapsulated within microfossils and/or entrained fossil ( 14 C-depleted) OC hosted in detrital mineral grains. Our findings highlight the value of RPO for assessment of 14 C age variability in sedimentary OC, and for assessing mechanisms of OM preservation in aquatic sediments. 
    more » « less